
MOSCOW MATHEMATICAL JOURNAL
Volume 18, Number 4, October–December 2018, Pages 721–737

STANDARD MODELS OF DEGREE 1 DEL PEZZO FIBRATIONS

KONSTANTIN LOGINOV

Abstract. We construct a standard birational model (a model that has
Gorenstein canonical singularities) for the three-dimensional del Pezzo
fibrations π : X → C of degree 1 and relative Picard number 1. We also
embed the standard model into the relative weighted projective space
PC(1, 1, 2, 3). Our construction works in the G-equivariant category
where G is a finite group.

2010 Math. Subj. Class. 14E07.

Key words and phrases. Minimal model program, del Pezzo fibrations, stan-

dard model.

Introduction

The Minimal Model Program (the MMP for short, see [Ma02], [KMM87]) is a
powerful tool that helps to understand the birational properties of algebraic vari-
eties. The minimal category in which it works is the category C of the projective
varieties with at worst terminal Q-factorial singularities. The result of applying
this program to a projective variety is either a minimal model, that is, a variety
X ∈ C whose canonical divisor class KX is nef, or a Fano–Mori fibration, that is,
a variety X ∈ C admitting a contraction morphism π : X → B whose fibers are of
positive dimension, the anti-canonical divisor class −KX is relatively ample, and
ρ(X/B) = 1.

We will focus on the three-dimensional case. In this case, the base B of the
Fano–Mori fibration π : X → B can be of dimension 0, 1 or 2. If dimB = 0 then
X is a (possibly singular) Fano variety. It is known that Fano varieties lie in a
finite number of algebraic families. However, they are classified only in the smooth
case. In the singular case there are partial classificational results (see for example
[Pro16a]).

If dimB = 2 then a general fiber of π is a non-singular rational curve. In this
case, π : X → B is called a Q-conic fibration. It is known that in this case there
exists a standard model, that is, a Q-conic fibration π′ : X ′ → B′, where X ′ and
B′ are non-singular, X ′ is fiberwise birationally equivalent to X, and ρ(X ′/B′) = 1
(see [Sa82]).
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Finally, if dimB = 1 then a general fiber of π is a non-singular del Pezzo surface.
In this situation the fibration π : X → B is called a Q-del Pezzo fibration. Standard
models of such fibrations were considered in the work of A. Corti [Co96], see also
[Ko97].

For the applications to the problem of classification of the finite subgroups in
the Cremona group (see for example [PS]), as well as for birational classification
of varieties over algebraically non-closed fields one should change the category C.
We will work with the varieties (defined over an arbitrary field of characteristic 0)
admitting an action of a finite group G. In this case, we can apply the G-equivariant
Minimal Model Program (the G-MMP, see [KM98, 2.18, 2.19], [Mo88, 0.3.14]).
Again, a final product of applying this program can be either a G-minimal model, or
a G-Fano–Mori fibration. For a three-dimensional G-Fano–Mori fibration π : X →
B, as in the “classical” situation, we have three possibilities:

• GQ-Fano varieties. In general, this class is poorly understood. Partial
results can be found in the works [Pro15a], [Pro16b], [Pro16a], [PS].

• GQ-conic fibrations. In this case existence of the standard model is proven
in the work [Av14].

• GQ-del Pezzo fibrations (see Definition 1.5). In the present work, we
construct standard models of GQ-del Pezzo fibrations of degree 1.

The following theorems are the main results of this paper (the necessary defini-
tions are given in Section 1).

Theorem A. Let X be a projective three-dimensional G-variety and C be a G-
curve. Let π : X → C be a proper G-morphism whose generic fiber is a non-
singular degree 1 del Pezzo surface Xη, and PicG(X/C) is generated by −KX and
G-components of fibers of π. Then there exists a Gorenstein model, that is, a
generalised G-del Pezzo fibration σ : Y → C ′ such that

(i) the following diagram is commutative:

X
χ //

π

��

Y

σ

��
C // C ′,

where χ is a birational G-equivariant map,
(ii) Y has only Q-factorial canonical Gorenstein singularities,
(iii) C ′ is non-singular and projective,
(iv) χ induces an isomorphism between Xη and Yη′ , where Yη′ is the generic

fiber of σ,
(v) any fiber of σ is reduced and irreducible.

Corollary B. If π : X → C is a GQ-del Pezzo fibration of degree 1 then it has a
model with at worst Q-factorial canonical Gorenstein singularities, with irreducible
fibers and with the same generic fiber as π.

Theorem C. Let σ : Y → C be a generalised G-del Pezzo fibration of degree 1, and
let Y have only Gorenstein canonical singularities. Then Y admits an embedding
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over C into the relative weighted projective space

Y ↪→ PC(1, 1, 2, 3).

We prove these results in several steps. First, in Section 1, Proposition 1.7, we
give the main definitions and prove some preliminary results. Second, in Section 2
we establish some rigidity properties for del Pezzo surfaces and del Pezzo fibrations
of degree 1. Third, in Section 3, Proposition 3.1, starting from a del Pezzo fibration
of degree 1 as in Theorem A, we show that X is G-birational over C to a GQ-del
Pezzo fibration of degree 1. After that, in 3.2 we construct a canonical model of
X, that is, a fibration π̄ : X̄ → C which is G-birational to X over C and such
that the pair (X̄, |−KX̄ + π̄∗D̄|) is canonical for some D̄. Next, in Section 4,
Theorem 4.3, we construct a Gorenstein model, which proves Theorem A. After
that, in Section 5, we recall some facts on the anticanonical algebra of degree 1 del
Pezzo surfaces. Finally, in Section 6, we embed a Gorenstein G-fibration Y into
PC(1, 1, 2, 3) proving Theorem C.

The author is grateful to his scientific advisor Yu. Prokhorov for posing the
problem and constant support in writing the paper, and to A. Kuznetsov and
C. Shramov for many helpful discussions.

1. Preliminaries

We work over a field of characteristic 0, not necessarily algebraically closed. We
also fix a finite group G. Recall the standard definitions.

Definition 1.1. An algebraic variety X is called a G-variety (or a variety with an
action of the group G) if there exists a homomorphism (not necessarily injective)

φ : G→ Aut X.

Definition 1.2. A rational map of G-varieties f : X 99K Y is called a G-map if f
commutes with the action of the group G on X and on Y . If the map f is birational
we say that X is G-birational to Y . If the map f is a morphism then f is called a
G-morphism.

Definition 1.3. A G-variety X is called GQ-factorial if any G-invariant Weil
divisor is Q-Cartier.

Let us fix the notation. For a vector space (or a vector bundle) A we denote
its k-th symmetric power by SkA, and its full symmetric power by S•A. The base
locus of a linear system L on X we denote by Bs L . Let π : X → C be a proper
morphism onto the variety C. By η we denote the generic point of C, and by Xη

the generic fiber of π. By a general fiber we mean a fiber over some closed point in
an open subset U ⊂ C. We denote by Z1(X/C) the free abelian group generated
by reduced irreducible curves which are mapped to points by π. There is a natural
intersection pairing

( , ) : Pic(X)× Z1(X/C)→ Z.
We put Pic(X/C) = Pic(X)/ ≡, where ≡ is the numerical equivalence with respect
to the pairing introduced above. We denote by ρ(X/C) the dimension of Pic(X/C)

and by ρG(X/C) the dimension of the G-invariant subspace PicG(X/C).
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Let D and D′ be divisors on X. We write D
C
∼ D′ if D ∼ D′ + π∗E for some

Cartier divisor E on C. If Q-divisors on X are Q-linearly equivalent we write
D

Q
∼ D′. Finally, we write D

Q,C
∼ D′ if Q-divisors D and D′ on X are Q-linearly

equivalent over C, that is, D
Q
∼ D′ + π∗E.

We introduce the main definitions.

Definition 1.4. A del Pezzo surface S is a (not necessarily normal) projective
surface that has at worst Gorenstein singularities and whose anti-canonical divisor
class −KS is ample. The degree of a del Pezzo surface S is the number (−KS)2.

Definition 1.5. Let X be a three-dimensional normal projective G-variety with
at worst terminal singularities and let C be a non-singular G-curve. Assume that

(i) X is GQ-factorial;
(ii) there exists a projective G-morphism with connected fibers π : X → C;

(iii) −KX is π-ample;
(iv) π is an extremal contraction, that is, ρG(X/C) = 1.

Then π : X → C is called a GQ-del Pezzo fibration. The degree of a GQ-del
Pezzo fibration is the degree of its generic fiber Xη. Since X is terminal Xη is a
non-singular del Pezzo surface. If X has Gorenstein singularities we call π : X → C
a G-del Pezzo fibration.

Definition 1.6. We call π : X → C a generalised GQ-del Pezzo fibration if X has
at worst canonical singularities and conditions (ii) and (iii) of Definition 1.5 are
satisfied. Notice that in this case the generic fiber Xη can be singular.

We will work with the anticanonical linear system on X.

Proposition 1.7 [Al94, 2.17, 2.19]. Let π : X → C be a GQ-del Pezzo fibration.
Then there exists a divisor D (which we may assume to be G-invariant) on C such
that the linear system H = |−KX + π∗D| on X is non-empty and has no fixed
components.

We will use the language of singularities of the linear systems, introduced in
[Al94, 1.8] and [Co95a]. It is easy to see that for a GQ-del Pezzo fibration the
restriction of the linear system H chosen above to a general fiber of the morphism
π is surjective. If the degree of a general fiber is 1 then the linear system H has one
simple base-point on it. Hence it is easy to see that the pair (X, H ) is canonical
outside a finite number of fibers. Our aim is to construct a canonical model for the
pair (X, H ). We will need the following lemmas:

Lemma 1.8. Let π : X → C be a generalised Gorenstein G-del Pezzo fibration
(that is, KX is Cartier) of degree d with at worst canonical singularities. Let F be
the scheme fiber over a closed point. Write F =

∑
miFi, where Fi are irreducible

components. Then
∑
mi 6 d. In particular, if d = 1, then any geometric fiber is

reduced and irreducible.
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Proof. We may assume the ground field to be algebraically closed. By the adjunc-
tion formula KX |F = KF , and we have

d = (−KF )2 = (−KX)2 · F = (−KX)2 ·
∑

miFi =
∑

mi(−KF |Fi)2 >
∑

mi,

the last inequality holds since −KF is an ample Cartier divisor on Fi. �

Lemma 1.9 [Al94, 1.22]. Suppose that the pair (X, H ) is terminal, where H is a
linear system without fixed components. Then H has at worst isolated non-singular
base-points Pi such that multPi H = 1.

Lemma 1.10 [Al94, 1.23]. Suppose that X has only terminal singularities and the
pair (X, H ) is canonical. Then in the neighbourhood of any base-point P of H
we have H ∼ −KX .

2. Birational Rigidity

The following lemma is a variant of birational rigidity of degree 1 del Pezzo
surfaces (cf. [Is96, 1.6]).

Lemma 2.1. Let S be a non-singular del Pezzo surface of degree 1, and let T be
either a normal del Pezzo surface of degree d or a conic bundle over a non-singular
curve. Let f : S 99K T be a birational map between them. Put

H =


|−KT |, if d > 3,

|−2KT |, if d = 2,

|−3KT |, if d = 1,

|nF |, where F is the class of a fiber if T is a conic bundle, n > 1.

Suppose that L := f−1
∗ H ⊂ |−aKS | for some positive integer a. Then T is a

degree 1 del Pezzo surface and f is an isomorphism.

Proof. All the properties in the claim can be checked over an algebraically closed
field, so we assume that. Consider a resolution of the points of indeterminacy of f

Z
g

��

h

��
S

f // T .

Consider the case where T is a del Pezzo surface. Since in this case H is very
ample (see Proposition 5.1) h is the blow up of the base locus of L . It is easy to

check (see [Is96, 1.3.2]) that for the strict transform L̃ := g−1
∗ L we have

L̃ 2 = L 2 −
∑

r2
i ,

KZ · L̃ = KS ·L +
∑

ri,
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where ri are the multiplicities of the base points of L (including infinitely near

ones). Notice that L̃ = h−1
∗ H , and since H is base point free we get

H 2 = L̃ 2 = L 2 −
∑

r2
i = a2 −

∑
r2
i ,

H ·KT = KZ · L̃ = −a+
∑

ri.

Consider the cases:
1) d > 3. We get

a2 =
∑

r2
i + d, a =

∑
ri + d.

It follows that ri = 0 for any i and d = 1, which contradicts the assumption.
2) d = 2. We get

a2 =
∑

r2
i + 8, a =

∑
ri + 4.

These equations easily lead to a contradiction.
3) d = 1. Then we get the equations

a2 =
∑

r2
i + 9, a =

∑
ri + 3.

We deduce that all the ri = 0, hence the map f is a morphism and a = 3. Thus f
is a contraction of the exception divisor E. Hence

KS = f∗KT + E.

On the other hand, aKS = f∗KT . Hence (1− a)KS = E, which is absurd. We see
that there are no contracted curves and f is an isomorphism.

Now consider the case when T is a conic bundle over a non-singular curve, that is,
there exists a morphism τ : T → B whose general fiber is a non-singular conic. We
have H 2 = (nF )2 = 0 and H ·KT = nF ·KT = −2n by adjunction. Considering
the resolution of the base points of L we can write the formulas as above and get

a2 =
∑

r2
i , a =

∑
ri + 2n.

Again, it is easy to derive a contradiction.
We see that only case 3 can occur, and the claim follows. �

The next proposition gives a generalization of the rigidity property to degree 1
del Pezzo fibrations.

Proposition 2.2. Let X be a projective three-dimensional G-variety and C be a
non-singular G-curve. Let π : X → C be a G-morphism whose generic fiber is a
non-singular degree 1 del Pezzo surface Xη, and PicG(X/C) is generated by −KX

and G-components of fibers. Suppose that X is G-birational over C to a generalised
GQ-Fano–Mori fibration π′ : X ′ → B over C, that is, the following diagram is
commutative

X
χ //

π

��

X ′

π′

��
C B.

ψoo
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Then ψ is an isomorphism, X ′ is a GQ-del Pezzo fibration of degree 1 and Xη ' X ′η.
Here X ′η is the generic fiber of X ′ over C.

Proof. The map χ induces a birational map f : Xη 99K X ′η. Suppose that B is a
curve. Since the diagram is commutative, the fibers of π and π′ are connected and
B is normal we get that ψ is an isomorphism. Then X ′η is a del Pezzo surface over
the function field of C. We want to apply Lemma 2.1.

First consider the case when X ′η is a degree 1 del Pezzo surface. By adjunction
we have −3KX′ |X′η = −3KX′η

. The class of −3KX′ is G-invariant in Pic(X ′/C).

Since χ is a G-map, the class of χ−1
∗ (−3KX′) is also G-invariant in Pic(X/C).

Hence it has the form −aKX + D for some a and some divisor D concentrated in
the fibers. Since (−aKX + D)|Xη = −aKXη we have f−1

∗ (3KX′η
) = −aKXη , and

the conditions of Lemma 2.1 are satisfied. Thus f is an isomorphism.
If X ′η is a del Pezzo surface of degree d > 2 a similar argument yields a contra-

diction.
Now suppose that B is a surface in which case X ′η as a surface over the function

field of C admits a conic bundle structure. Consider the divisor class Fη on X ′η
corresponding to the generic fiber of the map π′|X′η : X ′η → Bη. Clearly there is

a divisor F on X ′ such that F |X′η = Fη. Put F ′ =
∑
g∈G g.F . Since G sends a

fiber of π′ to a fiber of π′ we have (g.F )|X′η = Fη for any g ∈ G. Hence F ′ is

G-invariant in Pic X and F ′|X′η = nFη, where n = |G|. Since χ is a G-map, χ−1
∗ F ′

is G-invariant as well, so it has the form −aKX + D for some a and some divisor
D concentrated in the fibers of π. Hence f−1

∗ (nFη) = −aKXη , so the conditions of
Lemma 2.1 are satisfied, and we get a contradiction. �

3. Canonical Model

First we construct a model that is a GQ-del Pezzo fibration in the sense of
Definition 1.5.

Proposition 3.1. Let X be a projective three-dimensional G-variety and C be a
G-curve. Let π : X → C be a proper G-morphism whose generic fiber is a non-
singular degree 1 del Pezzo surface Xη, and PicG(X/C) is generated by −KX and
G-components of fibers. Then there exists a GQ-del Pezzo fibration π′ : X ′ →
C ′ with the generic fiber X ′η isomorphic to Xη such that the following diagram
is commutative:

X
χ //

π

��

X ′

π′

��
C // C ′.
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Proof. Let j : C1 → C be a normalization. Consider the following commutative
diagram

X

π

��

π1

  
C oo

j
C1,

where the map π1 := π ◦ i−1 may be not defined over some points of C1.
Let X1 be a G-equivariant resolution of singularities (see [AW97, Theorem 0.1])

of X and the indeterminacy points of π1:

X oo
h

π

��

X1

π2

��
C // C1.

Since a general fiber of π1 is non-singular h does not change it. Apply the G-
MMP (see [Mo88, 0.3.14]) over C1 to the variety X1. We get the following diagram
of G-maps, where the map g is a composition of flips and divisorial contractions

X1
g //

π2

��

X ′

π′

��
C1 B.

ψoo

Put χ = g ◦ h−1. The map χ induces a birational map of the generic fibers
f : Xη 99K X ′η, where X ′η is the generic fiber of the morphism ψ ◦ π′. Then Propo-
sition 2.2 shows that f and ψ are isomorphisms, and the claim follows. �

Notice that the assumption on PicG(X/C) in the above proposition is a relax-
ation of property (i) in the Definition 1.5. Now we are ready to construct a canonical
model.

Theorem 3.2. Let π : X → C be a GQ-del Pezzo fibration of degree 1. Then there
exist a GQ-del Pezzo fibration π̄ : X̄ → C of degree 1 with the generic fiber X̄η ' Xη

and a commutative diagram

X
h //

π

��

X̄

π̄

��
C,

where the map h is birational and the pair (X̄, H̄ ) is canonical, where H̄ =
|−KX̄ + π̄∗D̄| for some ample G-invariant divisor D̄ on C. The pair (X̄, H̄ )
is called a canonical model of (X, H ).

Proof. We put H = |−KX + π∗D|, where D is a G-invariant ample divisor on C
as in Proposition 1.7. We may assume that the following map is surjective

H0(X, OX(−KX + π∗D))� H0(S, OS(−KX + π∗D)) = H0(S, OS(−KS)).
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for a general fiber S of the morphism π. Thus on S the linear system H has only
one simple base-point. There is a corresponding rational section of the morphism
π whose closure we will denote by Γ. Thus Γ ⊂ Bs H .

Let g1 : X1 → X be the blow-up of the curve Γ. We denote its exceptional divisor
by E1. The linear system H1 = g−1

∗ H is base-point free on a general fiber of the
morphism π1.

Let g2 : X̃ → X1 be a G-equivariant resolution of singularities of the pair
(X1, H1). We have a commutative diagram

X̃
g2 //

π̃   

X1

π1

��

g1 // X

π
~~

C.

We introduce the notation

g = g2 ◦ g1, H̃ = (g2)−1
∗ H1, Ẽ1 = (g2)−1

∗ E1.

On a general fiber g2 is an isomorphism. Hence all the exceptional divisors of
the morphism g2 are contained in a finite number of fibers of π̃. Since the linear

system H̃ is base-point free, the pair (X̃, H̃ ) has the same singularities as X̃ itself.

In particular, (X̃, H̃ ) is canonical. Write

KX̃ + H̃ +
∑

aiẼi = g∗(KX + H )
C
∼ 0, (KX + H )

C
∼ 0,

where Ẽi are the exceptional divisors of the morphism g. We have ai ∈ Z since

KX + H is a Cartier divisor on X. By construction all the exceptional divisors Ẽi
are contained in a finite number of fibers of the morphism π̃ : X̃ → C except Ẽ1 for

which we have g∗Ẽ1 = Γ.

We run the G-MMP over C for the pair (X̃, (1− ε)H̃ ) for 0 < ε� 1.

Let S̃ be a general fiber of the morphism π̃. It is easy to see that the linear
system

−(KX̃ + (1− ε)H̃ )|S̃ = −εKS̃

is nef on S̃. Hence the result of applying the G-MMP is a GQ-Fano–Mori fibration
with the base B over C. We have the following commutative diagram

X̃
f //

π̃

��

X̄

π̄

����
C B,

ψ
oo

where f is a composition of divisorial contractions and KX̃ + (1 − ε)H̃ -flips. By

Proposition 2.2 we see that X̄ is a GQ-del Pezzo fibration of degree 1 over B (and
B = C) and X̄η ' Xη.

The pair (X̃, (1− ε)H̃ ) is terminal, therefore the pair (X̄, (1− ε)H̄ ) is terminal
as well. In particular, X̄ has terminal singularities. Since 1 is not an accumulation
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point of the set of 3-dimensional canonical thresholfds (see [Pr08]) we can choose
ε� 1 such that the pair (X̄, H̄ ) is canonical.

Since f−1 does not contract divisors the following formula holds:

KX̄ + H̄ +
∑

aiĒi
C
∼ 0, (3.3)

where f∗Ẽi = Ēi. Thus,

H̄ +
∑

aiĒi ∼ −KX̄ + π̄∗A (3.4)

for a G-invariant divisor A on C. By construction Ēi lie in the fibers of π̄.
Since ρG(X̄/C) = 1 any fiber of π̃ is G-irreducible. Since Ēi are G-irreducible
we get that miĒi = π̄∗(xi), where xi ∈ C for some integer mi. The case mi > 1
corresponds to a multiple fiber of the morphism π̄. Adding if necessary some num-
ber of points xi to A we may assume that in the equation (3.4) we have 0 6 ai < mi

for any ai. Suppose that there exists such i that ai > 0.

By construction we have f∗Ẽ1 = Γ̄, where Γ̄ is a curve that is a section of π̄ and
Γ̄ ⊂ Bs H̄ . By Lemma 1.9 in a neighbourhood of any base-point of H̄ we have
−KX̄ ∼ H̄ . If π̄∗(xi) = miĒi then miĒi · Γ̄ = 1 and Ēi · Γ̄ = 1

mi
. Let us consider

the base-point P ∈ Ēi ∩ Γ̄. From the formula (3.3) it follows that aiĒi is a Cartier
divisor in a neighbourhood of P . Thus aiĒi · Γ̄ ∈ Z. On the other hand,

0 < aiĒi · Γ̄ =
ai
mi

< 1

since 0 < ai < mi. The contradiction shows that

KX̄ + H̄
C
∼ 0.

This completes the proof. �

4. Gorenstein Model

We need the following technical proposition that follows easily from Kodaira’s
Lemma (see for example [KMM87, 0.3.5]).

Proposition 4.1. Let B be a nef big Q-Cartier divisor on a normal projective
variety X with at worst terminal singularities. Then there exists an ample Q-
Cartier divisor A and an effective Q-Cartier divisor N such that B

Q
∼ A + N and

the pair (X, N) is terminal.

We also use the construction of a terminal modification of a pair.

Proposition 4.2 [Co95a, 2.8]. Let X be a normal projective G-variety with at
worst terminal singularities and let the pair (X, H ) be canonical. Then there
exists a G-equivariant terminal modification, that is a G-variety X̄ and a birational
G-morphism f : X̄ → X such that the pair (X̄, H̄ ) is terminal, where H̄ = f−1

∗ H
and the following formula holds

KX̄ + H̄ = f∗(KX + H ).

Now we construct a Gorenstein model.
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Theorem 4.3. Let π : X → C be a GQ-del Pezzo fibration of degree 1. Then there
exists a Gorenstein model, that is, a generalised GQ-del Pezzo fibration σ : Y → C
of degree 1 such that Y is G-birational to X over C and Y has at worst canonical
Gorenstein singularities. Moreover, the generic fiber Yη of σ is non-singular, Yη '
Xη, and the special fibers are reduced and irreducible.

Proof. By Theorem 3.2 we may assume that the pair (X, H ) is canonical, where
H = |−KX + π∗D| for some G-invariant ample Cartier divisor D on C. Let
(X̄, H̄ ) be its G-equivariant terminal modification over C (see Proposition 4.2).
By Lemma 1.9 the linear system H̄ has at worst isolated non-singular base-points
Pi such that multPiH̄ = 1. Since X̄ is terminal it has at worst isolated singular
points. It follows that a general element of H̄ is a Cartier divisor.

The linear system H̄ is nef since it has no curves in its base locus. Restricting
H̄ to a general fiber of the morphism π̄ : X̄ → C we notice that for any m > 2 the
image of the map given by the linear system |mH̄ | is three-dimensional. Hence
the linear system H̄ is big. By Proposition 4.1 for some Q-Cartier divisors A and
N we have

H̄
Q
∼ A+N,

where A is ample, N is effective and the pair (X̄, N) is terminal. By the construc-
tion of X̄ we have KX̄ + H̄

C
∼ 0, hence

KX̄ +N
Q,C
∼ −A.

Thus, for any curve Z ∈ NE(X/C) with Z · H̄ = 0 we have Z · (KX̄ +N) < 0.
By Contraction Theorem [KMM87, Theorem 3.2.1] the linear system |nH̄ | gives a
(G-equivariant) contraction morphism g : X̄ → Y with connected fibers such that
the variety Y is projective over C and the following diagram is commutative

X̄
g //

π̄

��

Y

σ

��
C.

It also guarantees the existence of a σ-ample Cartier divisor H on Y such that
g∗H = H̄ . Since H̄ is ample on an open subset of X̄ we see that g(X̄) = Y is
three-dimensional. Hence g is birational.

Now we prove that Y has Gorenstein canonical singularities. Since by con-
struction of X̄ we have KX̄ + H̄ = π̄∗D for some ample divisor D on C and
g∗(KX̄ + H̄ ) = KY +H then from the commutativity of the diagram

KY +H = g∗π̄
∗D = σ∗D.

Thus KY is a Cartier divisor. We have

g∗KY = g∗(−H + σ∗D) = −H̄ + π̄∗D = KX̄ .

Hence Y has canonical singularities.
The fact that Yη is non-singular and Yη ' Xη follows from Proposition 2.2. The

special fibers are reduced and irreducible due to Lemma 1.8. It remains to show
that Y is GQ-factorial. We show this in the next lemma.
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Lemma 4.4. Let σ : Y → C be a generalised Gorenstein del Pezzo fibration of
arbitrary degree with at worst canonical singularities. Suppose that the fibers of σ
are reduced and irreducible. Then Y is Q-factorial.

Proof. Since Y is canonical it has finitely many non-Q-factorial points by [Re85,
3.4]. Let F =

∑
Fi be the union of the fibers of σ that contain all the points that

are not Q-factorial. Write the excision exact sequence⊕
i

ZFi → Cl Y → Cl U → 0,

where U = Y \ F . Since U is Q-factorial we have Cl U ⊗ Q = Pic U ⊗ Q. We see
that any Weil divisor on Y after subtracting some number of fibers Fi and taking
multiple comes from Pic U . So it is enough to prove that any Cartier divisor on U
extends to a Cartier divisor on Y . But this follows from the commutative diagram
with exact rows (see [EGAG, 21.4.3])

0 // Pic C
σ∗ //

��

Pic Y //

��

Pic Yη

'
��

// 0

0 // Pic V
σ|∗V // Pic U // Pic Yη // 0,

where V = σ(U). Indeed, the left vertical arrow is clearly surjective, hence by
the Snake Lemma the middle vertical arrow is surjective as well. �

Now that Lemma 4.4 is proved, the proof of Theorem 4.3 is complete. �

Remark 4.5. In the proof of the theorem by construction we have

Y ' ProjC
⊕
m>0

σ∗OY (mH).

Proof of Theorem A. Follows immediately from Propositions 1.7, 3.1, and Theo-
rems 3.2, 4.3. �

5. Anticanonical Algebra of a Degree 1 del Pezzo Surface

We need the following results on the anticanonical algebra

R =
⊕
m>0

H0(S, −mKS)

of a degree 1 del Pezzo surface S.

Proposition 5.1. The following holds:

(i) dim H0(S, −mKS) = m(m+ 1)/2 + 1;
(ii) the linear system |−KS | has one simple base-point;

(iii) the linear system |−2KS | is generated by global sections;
(iv) the linear system |−3KS | is very ample.



STANDARD MODELS OF DEGREE 1 DEL PEZZO FIBRATIONS 733

Proof. Let S be normal. In this case, the statements (i)–(iv) are well known if S is
non-singular. In the singular case see [HW81, Section 4].

Let S be non-normal and let α : T → S be its normalisation. According to [Re94,
1.1] (see also [AF03, 1.5]) we have

T ' P2, α∗(−KS) ' OP2(1).

It is proven there that α is an isomorphism outside a (possibly singular) conic
Q on P2, and the morphism α|Q is a 2 to 1 covering over a curve on S.

According to [AF03, 2.2] for any m > 1 the following holds:

dim H0(T, α∗(−mKS)) = dim H0(S, −mKS) +m.

Hence we get

dim H0(S, −mKS) = dim H0(P2, OP2(m))−m = (m+ 1)(m+ 2)/2−m
= m(m+ 1)/2 + 1.

This proves (i). The statements (ii) (iv) are proven in [AF03, 1.2, 1.5(A)], see
also [Re94, 4.10 (ii)].

Since we have |σ∗(−KS)| = |OP2(1)|, all the elements of the linear system |−KS |
are irreducible. By the adjunction formula they are curves of arithmetic genus 1.
Since they are rational these curves are either nodal or cuspidal cubic curves. For
any C ∈ |−3KS | we have the following exact sequence

0→ OS(−3KS − C)→ OS(−3KS)→ OC(−3KS)→ 0.

Since any linear system on the curve C of degree 2 or more does not have base-points
and H1(S, OS) = 0, the statement (iii) follows. �

Corollary 5.2. (i) The linear system |−2KS | defines a two-fold covering of the
quadratic cone

φ = φ|−2KS | : S → Q ⊂ P3.

(ii) The algebra R =
⊕

m>0 H0(S, −mKS) is isomorphic to C[x, y, z, w]/(f),
where the degree of generators are 1, 1, 2, 3 correspondingly and the rela-
tion f has degree 6. Hence, S is isomorphic to the degree 6 hypersurface
in the weighted projective space P(1, 1, 2, 3).

Proof. Follows from the previous proposition in full analogy to the non-singular
case, see [Do12, 8.3]. �

6. The Relative Projective Space

We put
Am = σ∗(OY (−mKY )), m > 0,

A =

∞⊕
m=0

Am.

By Proposition 5.1 the sheaf Am on C is a vector bundle of rank m(m+1)/2+1.
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Remark 6.1. We can restrict the sheaf of algebras A on a fiber of the morphism σ
and apply Corollary 5.2 to show that A is generated by its components of degree6 3.

We will construct the relative weighted projective space PC(1, 1, 2, 3), that is a
variety which is projective over C and which has P(1, 1, 2, 3) as a fiber over any
point of C. We will also construct an embedding over C

Y
i //

σ

  

PC(1, 1, 2, 3)

~~
C

We denote the cokernel of the natural inclusion α : S2A1 → A2 by G2. We get
an exact sequence

0→ S2A1 → A2 → G2 → 0. (6.2)

Consider the multiplication map µ : A1 ⊗ A2 → A3. Let V = Kerµ, G3 =
Cokerµ. It is easy to check fiberwise that V G3 are vector bundles of rank 2 and 1
correspondingly. Hence we get an exact sequence

0→ (A1 ⊗A2)/V → A3 → G3 → 0 (6.3)

Consider a commutative diagram of natural maps

S•(A1 ⊕A2 ⊕A3) // A

S•(A1 ⊕A2 ⊕ ((A1 ⊗A2)/V )).

OO 77

By Remark 4.5 we have Y = ProjC A. We define the relative projective spaces

PC(12, 24, 37) = ProjC S•(A1 ⊕A2 ⊕A3),

PC(12, 24, 36) = ProjC S•(A1 ⊕A2 ⊕ ((A1 ⊗A2)/V ))).

Thus we obtain a commutative diagram of varieties over C

PC(12, 24, 37)

p

��

Y
joo

q
xx

PC(12, 24, 36),

where q = p ◦ j. According to Remark 6.1 the map j is a fiberwise embedding
over C.

Proposition 6.4. The image q(Y ) is a quadratic cone PC(1, 1, 2) over C, that is,
a projective variety over C such that a fiber over any point x ∈ C is isomorphic to
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P(1, 1, 2). Moreover, the following diagram is commutative

PC(12, 24, 37)

p

��

Y
joo

v

��

q

ww
PC(12, 24, 36) PC(1, 1, 2),

uoo

where u is a fiberwise embedding, v is a fiberwise two-fold covering and p is a
projection from a point. In particular the map q is a morphism.

Proof. On the fiber over any point x ∈ C the sequences (6.2) and (6.3) split as the
sequences of vector spaces. We have the following non-canonical isomorphisms

(A2)x ' (S2A1 ⊕G2)x, (6.5)

(A3)x ' (S3A1 ⊕ (A1 ⊗G2)⊕G3)x, (6.6)

((A1 ⊗A2)/V )x ' (S3A1 ⊕ (A1 ⊗G2))x. (6.7)

On the other hand, over a point x ∈ C we have

ProjS•(A1 ⊕G2)x ' P(1, 1, 2)

Using the isomorphisms (6.5)–(6.7) over a point x ∈ C we construct a natural
surjective map

s : S•(A1 ⊕ (S2A1 ⊕G2)⊕ (S3A1 ⊕ (A1 ⊗G2)))x //

'

S•(A1 ⊕G2)x,

S•(A1 ⊕A2 ⊕ ((A1 ⊗A2)/V )))x

where s identically maps

s((SkA1)x) = (SkA1)x, k > 1, s((G2)x) = (G2)x

and s extends to the corresponding tensor powers in the obvious way. Thus s
induces an embedding u : P(1, 1, 2)→ P(12, 24, 36).

The map s can be extended to a commutative diagram

S•(A1 ⊕ (S2A1 ⊕G2)⊕ (S3A1 ⊕ (A1 ⊗G2)⊕G3))x
s′ // Ax

S•(A1 ⊕ (S2A1 ⊕G2)x ⊕ (S3A1 ⊕ (A1 ⊗G2)))x
s //

z

OO
33

S•(A1 ⊕G2)x.

w

OO

Here the map z is induced by the natural inclusion of vector spaces, and the map
s′ is constructed in full analogy with the map s:

s′(SkA1)x = (SkA1)x, k > 1,

s′(G2)x = (G2)x ⊂ (S2A1 ⊕G2)x ' (A2)x ⊂ Ax,
s′(G3)x = (G3)x ⊂ (S3A1 ⊕ (A1 ⊗G2))⊕G3)x ' (A3)x ⊂ Ax.

It is easy to check that w is a fiberwise two-fold covering of the quadratic cone
as in Corollary 5.2 and that the diagonal map in the diagram induces the map q.
This proves the claim. �
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In the notation as above consider a variety

Z = p−1(u(PC(1, 1, 2))) ⊂ PC(12, 24, 37).

Clearly it is projective over C.

Proposition 6.8. Each fiber of Z over C is isomorphic to P(1, 1, 2, 3). Moreover,
there exists an embedding i : Y → Z over C.

Proof. It is obvious that Z has dimension 3 over C and that j(Y ) ⊂ C. For the
fiber Yx over a point x ∈ C we construct a commutative diagram

P(12, 24, 37)

p

��

P(1, 1, 2, 3)
roo

t

��
q

ww

Yx
ioo

v
zz

P(12, 24, 36) P(1, 1, 2),
u

oo

where u, v, p are as in Proposition 6.4, i is an embedding, t is a projection from
the point (0 : 0 : 0 : 1), and q = u ◦ t.

Using the isomorphisms (6.5)–(6.7) we construct a natural surjective map

S•(A1 ⊕A2 ⊕A3) ' S•(A1 ⊕ (S2A1 ⊕G2)⊕ (S3A1 ⊕ (A1 ⊗G2)⊕G3))

→ S•(A1 ⊕G2 ⊕G3).

This map induces an embedding r. We must show that r(P(1, 1, 2, 3)) is con-
tained in Zx and hence must coincide with it. The variety Z was defined as the
closure of the preimage of u(PC(1, 1, 2)) under the map p. Thus, it is enough to
show that there is a fiberwise inclusion

(p ◦ r)(P(1, 1, 2, 3)) ⊂ u(P(1, 1, 2)).

But it follows from the commutativity of the following diagram

S•(A1⊕(S2A1⊕G2)⊕(S3A1⊕(A1⊗G2)⊕G3))x // S•(A1⊕G2⊕G3)x // Ax.

S•(A1⊕(S2A1⊕G2)⊕(S3A1⊕(A1⊗G2)))x //

OO 33

S•(A1⊕G2)x

OO 88

�

We denote the variety Z by PC(1, 1, 2, 3)

Proof of Theorem B. Follows immediately from Proposition 6.8. �
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